

Trigonometric Proofs

Name Date

In this Activity, you will be working towards the following learning goals:

I can use and define the six trigonometric functions: sine, cosine, tangent, cosecant, secant, and cotangent I can use the fundamental trigonometric identities to simplify expressions and verify equivalences

Useful Trigonometric Identities:

$$\cos^2 x + \sin^2 x = 1$$
$$1 + \tan^2 x = \sec^2 x$$
$$1 + \cot^2 x = \csc^2 x$$

Helpful hints in case you have an identity crisis:

- Change everything to sine and/or cosine
- Look for occurrences of the basic three identities
- Combine +/- expressions into a single fraction using a common denominator

$$\bullet \quad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

- Use "fancy version of 1", for example multiply by $\frac{\tan x}{\tan x}$
- Multiply by the conjugate

$$(a^3 + b^3) = (a + b)(a^2 - ab + b^2)$$

•
$$(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$$

Trigonometric Proof Advice:

Start with the MORE COMPLICATED side and work VERTICALLY just on that side to make it look like the other side. SHOW ALL WORK. Note: We cannot assume that the equation is true, so properties of equality cannot be applied - i.e. we cannot add, subtract, multiply or divide on both sides of the equation.

Prove algebraically:

$$\cos x \tan x = \sin x$$

= (35x. Sih x 505x = Sin x

Examples: Prove the following.

1.)
$$1 + \tan^2 x = \sec^2 x$$

$$=\frac{\cos^2 x + \sin^2 x}{(\omega s^2 x)} = \frac{1}{(\omega s^2 x)}$$

$$\geq \frac{1}{(05^2 \times 10^2 \times$$

2.)
$$\cos^2 x - \sin^2 x = 2\cos^2 x - 1$$

3.)
$$\cot x \cdot \sin x \cdot \sec x = \cos^2 x + \sin^2 x$$

$$\frac{4.7(-\cos x)}{(-\cos x)(1+\cos x)} + \frac{1}{1-\cos x} \frac{(1+\cos x)}{(1+\cos x)}$$

$$= \frac{2}{\sin^3 x} = 2 \csc^2 x \sqrt{2}$$

5.) $\frac{1}{\cot x + \csc x} = \csc x - \cot x$ $= \frac{(\cancel{x})^2 \times - (\cancel{x})^2 \times (\cancel$